University of **3D-woven composite - Defect detection**

Ultrasonics and NDT Group

University of BRISTOL 3D-woven composite - Defect detection

Maximum of the cross-correlation (red) corresponds to the centre location of the unit cells.

University of BRISTOL 3D-woven composite - Defect detection

Create benchmark scan using a unit cell at each peak in the cross-correlation...

Then subtract benchmark scan from measured scan...

3D-woven composite - Defect detection

Real specimen: 1.7 mm thick (5-layers). FVF≈50%

Sticker placed to _____ check orientation of sample

University of BRISTOL

Resin columns allowing light through

Resin block from infusion Orthogonal Tape around the edges showing delimitation of the scanned regions Real specimen top view (and back-lit)

3D-woven composite - Defect detection

Single unit cell extraction

Unit cell dimension

Ultrasonics and NDT Group

University of BRISTOL **3D-woven composite - Defect detection**

Ultrasonics and NDT Group

3D-woven composite - Defect detection

- Extension to 3D
- Same process performed for each inplane layer in the 3D data.
- Six different depths below surface...

Depth: 0.99 mm

Depth: 1.27 mm

Depth: 1.7 mm

Ultrasonics and NDT Group

2D Woven Composites

BRISTOL Warp and Weft yarn measurement

Warp and Weft angles and spacing – plain weave

These lines have Miller indices (01) and (10) (indistinguishable)

But also truly identical 'pattern' lines at twice this spacing $(0\frac{1}{2})$

Miller indices

• Lattice lines are described this way...

...and weave-characteristic lines using fractional indices

• Radon Transform & FFT gives: spatial-frequency vs angle

Weave Classification

Mapping distortion

• Map δ - the angle between warp and weft

• In this case, δ =110° between warp and weft

Mapping distortion – 5-harness satin

Simulated 5harness satin weave with sine-wave inplane waviness.

0/90 and +45/-45 plies are shown.

Colour is shear angle measurement

Transitioning academic algorithms to multiple supply-chain partners

- Transition software-engineering documents, not actual software.
- Allows customisation within pre-existing commercial software packages.

- Manufacturing Technology Centre (MTC), UK
 - New programme to ease transition of academic public-domain algorithms into industry
- Algorithm Deployment Support Service (ADSS)

- Manufacturing Technology Centre (MTC), UK
 - New programme to ease transition of academic public-domain algorithms into industry
- Algorithm Deployment Support Service (ADSS)

- Some industries insist on multiple suppliers
 - A new design strategy based on NDT requires confidence in long-term support
 - Sole-supplier is often unable to provide that.
- Publish science, algorithms, validation
- Enable implementation with multiple suppliers
 - University prepares software engineering documents
 - Supports implementation
 - BUT end-users require confidence in implementation

- Ultrasonic 3D imaging of composites
 - EPSRC Fellowship in Manufacturing 2013-2018
 - End-user-funded collaborative project (9 partners)...

Academic Research	End users	NDT Supply Chain
University of Bristol	Rolls Royce	Ultrasonic Sciences Ltd
	BAE Systems	DolphiTech
Software engineering & testing	Dstl (MoD)	Wavelength NDT / UTEX
Manufacturing Technology Centre	GKN/Fokker Aerospace	+ 1 other
	Wind turbine company	

- Deployment of novel algorithms in industry (MTC)
 - Algorithm Deployment Support Service
 - Software-engineering document generation
 - Validation tests

BRISTOL Ultrasonic 3D imaging of composites

- Ultimate aim is to underpin lighter designs:
 - Full 3D inversion of material properties and defects
 - NDT-based performance prediction of asmanufactured, or damaged components

BRISTOL Ultrasonic 3D imaging of composites

- Ultimate aim is to underpin lighter designs:
 - Full 3D inversion of material properties and defects
 - NDT-based performance prediction of asmanufactured, or damaged components
- 'Chicken and Egg' problem
 - NDT implementation requires 'pull' from OEMs
 - Aircraft design 'pull' requires *established* NDT technology.
- Preliminary phase: solve a current problem
 - Better-informed concessions enhanced 'imaging'

- Offers traceability of requirements to implementation
- Offers 3D perspective to documentation
- HTML enables documents to be easily transferred and hosted on site
- Offers an intuitive way that a user can control the level of information they want to see

Progress Chart and Planner

	Requirements Document	Design Document	Test Document	User Manual	
Development and testing of Software Engineering Documents					
Stage 1	Nov 2018	Jan 2019	Mar 2019	Apr 2019	
Stage 2	Mar 2019	Apr 2019	Apr 2019	May 2019	
Stage 3	Apr 2019	May 2019	May 2019	Jun 2019	
1 st Supplier implementation					
Stage 1	Apr 2019	May 2019	Jun 2019	Aug 2019	
Stage 2	May 2019	Jun 2019	Aug 2019	Sep 2019	
Stage 3	Jul 2019	Aug 2019	Sep 2019	Oct 2019	
2 nd Supplier implementation					
Stage 1	Aug 2019	Sep 2019	Oct 2019	Nov 2019	
Stage 2	Sep 2019	Oct 2019	Nov 2019	Dec 2019	
Stage 3	Oct 2019	Nov 2019	Dec 2019	Jan 2020	

- Analytic Signal formulation separates phase (ply spacing) effects from amplitude (resin layer thickness).
- Ply tracking uses phase to track resin layers.
- Out-of-plane wrinkles can be measured using structure tensor applied to phase data.
- In-plane waviness measured using Radon transform on amplitude data.
- 3D weaves characterised and defects detected using cross-correlation of amplitude data vs benchmark.
- 2D weaves classified using image transformation of amplitude data, Miller indices, and distortions mapped.

BRISTOL Publications (presentation code: 44999)

Analytic signals and ply tracking:

- R A Smith, et al, "Ultrasonic Analytic-Signal Responses from Polymer-Matrix Composite Laminates." IEEE UFFC, Vol 65(2), pp 231-243. doi: 10.1109/TUFFC.2017.2774776, 2018
- R A Smith et al, "Ultrasonic Tracking of Ply Drops in Composite Laminates." Proc. QNDE, AIP Conf. Proceedings 1706, 050006 (2016); doi: 10.1063/1.4940505, 2016.

Out-of-plane ply orientation and wrinkle measurement:

- L J Nelson, "Ply-orientation measurements in composites using structure-tensor analysis of volumetric ultrasonic data." Composites A, Vol 104, pp 108-119, doi: 10.1016/j.compositesa.2017.10.027, 2018.
- B Larrañaga-valsero, et al. "Wrinkle measurement in glass-carbon hybrid laminates comparing ultrasonic techniques: A case Study." Composites A, Vol. 114, pp. 225-240, doi: 10.1016/j.compositesa.2018.08.014, 2018.

In-plane fibre direction and stacking sequence:

• L J Nelson & R A Smith, "Fibre direction and stacking sequence measurement in carbon fibre composites using Radon transforms of ultrasonic data", Composites A, Vol. 118, pp. 1-8, doi: 10.1016/j.compositesa.2018.12.009, 2019.

Ply Wrinkle Measurement

- Structure-tensor method
 - 2D or 3D gradients in data

Rock strata imaging – Geological sciences

```
S = \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
```

Eigenvectors of the tensor indicate orientation at that pixel location.

isotropic (spherically symmetrical) structure

fibre-like (linear) structre p

ply-like (planar) strucutre

Fig. 3. Examples of three classes of structure in 3D data (above) and the corresponding structure-tensor shape when viewed as an ellipsoid (below). (For

• Fibre angle measurement: Radon Transform

